Energy evaluation of three systems de automated planting for the cultivation of bean (phaseolus vulgaris l.) (Original)
Keywords:
planting; energy; input; output; coefficientAbstract
The work was carried out in the UEB “José Arteaga Hernández” belonging to the “Paquito Rosales Benítez” Agricultural Company of the Municipality of Yara, province Granma. It was carried out with the objective of evaluating the energy balance of the mechanized planting of the bean crop in three plantation frames (T1, T2 and T3), taking into account the consumption of direct and indirect use energy and the energy of input of the process (Input) and output (Output), the energy relation of the process (Ratio) and net energy coefficient (NER), and the emissions of carbon dioxide (CO2). For which T2 obtained the best results, with a direct energy consumption of 22, 46 GJ·ha-1 e indirectly of 40,71GJ·ha-1 less than T1 and T3 respectively. The Input energy was 64, 04 GJ·ha-1 y, depending on the agricultural yield of 4,95 GJ·kg-1, lower than T1 and T3 respectively. While, the output energy taking into account the agricultural performance was higher in T2 (203,0 GJ·ha-1 ) in relation to T1 and T3 respectively, for an energy ratio (Ratio) of 3,2; being 9,4 and 12,5 % higher than the values reached by T1 (2,9) and T3 (2,8) respectively and a net energy coefficient (NER) of 2,2 for T2; 1,9 for T1 and 1,8 for T3. The CO 2 emissions were greater in T1 (5 124,00 kgCO2EGJ·ha-1), being 8 and 6 % higher than T2 and T3 respectively.
References
2. Arredondo, J. J., Ortiz, H., Pössel, D. y Morales, D. (2003). Evaluation of the performance of three types of draught animal plows. Agrociencia, 37, 187-194.
3. Atencio, E. (2011). Evaluación de algunos índices tecnológicos-explotativos y energéticos durante las operaciones de labranza para el cultivo del King Grass (Pennisetum purpureun cv.). (Trabajo de Diploma), Universidad de Granma, Departamento de Ingeniería Agrícola.
4. Bowers, W. (1992). Agricultural field equipment. In: Fluck, R.C. (Ed.), Energy in World Agriculture. Energy in Farm Production. Elsevier, Amsterdam, 6, 117-129.
5. Hernándes, A., Pérez, J. M., Bosch, D. y Castro, N. (2015). Clasificación de los suelos de Cuba 2015. Instituto Nacional de Ciencias Agrícolas, Ministerio de Educación Superior (MES). Instituto de Suelo, Ministerio de la Agricultura (MINAG).
6. Kallivroussis, L., Natsis, A. y Papadakis, G. (2002). RD—rural development: the energy balance of sunflower production for biodiesel in Greece. Biosystems Engineering, 81(3), 347-354.
7. Lal, R. (2004). Carbon emission from farm operations. Environment international, 30(7), 981-990.
8. Olivet, Y. E. (2017). Balance energético de la preparación del suelo para el cultivo del frijol (Phaseolus vulgaris L.). REDEL. Revista Granmense de Desarrollo Local, 1(3), 144-145.
9. Paneque, P., Fernández, H. C. y de Oliveira, A. D. (2002). Comparación de cuatro sistemas de labranza/siembra en relación con su costo energético. Revista Ciencias Técnicas Agropecuarias, 11(2), 1-6.
10. Rodríguez, L. (2016). Balance energético para el cultivo del fríjol (Phaseolus vulgaris L.) en la Unidad Básica de Producción Cooperativa “14 de Junio”. (Trabajo de Diploma, curso 2015-2016), Universidad de Granma, Facultad de Ciencias Técnicas.
11. Statsoft (2003). Statistica for windows, second (Version 8 Statsoft Inc.). USA: Tulsa, OK.