Artificial Intelligence Tools in University Teaching: A Study Based on the SAMR Model (Original)
Keywords:
learning; university teaching; artificial intelligence; SAMR model; educational technologiesAbstract
The integration of artificial intelligence tools in university teaching is a topic of growing relevance, given the impact these technologies have on the transformation of educational processes. This study analyzed the implementation of intelligent technological tools in higher education, using the SAMR model as a theoretical framework to assess the level of technological integration and its effect on learning. A mixed approach was adopted, combining quantitative and qualitative methods at the theoretical, empirical, and statistical-mathematical levels. Data were collected on the use and perception of artificial intelligence tools used in university education. The results indicated that most tools are used at the replacement and augmentation levels, with a gradual shift toward modification and redefinition in specific teaching practices. Furthermore, a positive impact on the development of digital, communication, and critical thinking skills in students was evident. The main conclusion indicates that the integration of artificial intelligence, mediated by the SAMR model, has the potential to significantly transform university teaching, provided that ongoing teacher training and a reflective pedagogical approach that enhances educational innovation are promoted. This study is part of the research projects: Technological Tools under the SAMR Model. Case Study: Southern Manabí State University and Technologies Applied to Decision-Making for Innovation and Comprehensive Development in the Southern Manabí Region.
Downloads
References
Belkina, M., Scott D., Sasha, N., Rezwanul, H., Sarah, L., Neal, P., Grundy, S., & Ghulam, M. (2025). Implementing generative AI (GenAI) in higher education: A systematic review of case studies. Computers and Education: Artificial Intelligence, 8, 100407. https://doi.org/10.1016/j.caeai.2025.100407
Blundell, C. N., Mukherjee, M., & Nykvist, S. (2022). A scoping review of the application of the SAMR model in research. Computer and Education Open, 3, 100093. https://doi.org/10.1016/j.caeo.2022.100093
Cables, E. A., & Alcívar, K. L. (2024). Uso de plataformas virtuales en la educación y su influencia en el aprendizaje autónomo. Journal TechInnovation, 3(2), 14–22. https://revistas.unesum.edu.ec/JTI/index.php/JTI/article/view/83
Das, D., Kumar, N., Longjam, L. A., Sinha, R., Deb Roy, A., Mondal, H., et al. (2023). Assessing the capability of ChatGPT in answering first- and second-order knowledge questions on microbiology as per competency-based medical education curriculum. Cureus, 15(3). https://doi.org/10.7759/cureus.36034
Elkhodr, M., Gide, E., Wu, R., & Darwish, O. (2023). ICT students’ perceptions towards ChatGPT: An experimental reflective lab analysis. STEM Education, 3(2), 70–88. https://doi.org/10.3934/steme.2023006
Guo, K., Zhong, Y., Li, D., & Chu, S. K. W. (2023). Effects of chatbot-assisted in-class debates on students’ argumentation skills and task motivation. Computers & Education, 203. https://doi.org/10.1016/j.compedu.2023.104862
Hamilton, E. R., Rosenberg, J. M., & Akcaoglu, M. (2016). The substitution augmentation modification redefinition (SAMR) model: A critical review and suggestions for its use. TechTrends, 60(5), 433–441. https://doi.org/10.1007/s11528-016-0091-y
Hernández-Sampieri, R., & Mendoza, C (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. Editorial Mc Graw Hill Education.
Han, J., Yoo, H., Kim, Y., Myung, J., Kim, M., Lim, H., … Oh, A. (2023). RECIPE: How to integrate ChatGPT into EFL writing education. Paper presented at the proceedings of the tenth ACM conference on learning @ scale, Copenhagen, Denmark. https://doi.org/10.1145/3573051.3596200
Heinze, A., Procter, C., & Scott, B. (2007). Use of conversation theory to underpin blended learning. International Journal of Teaching and Case Studies, 1(1–2), 108–120. https://doi.org/10.1504/ijtcs.2007.014213
Kong, Z. Y., Kurnia, V. S., Segovia, J. G., & Sunarso, J. (2023). Complementary role of large language models in educating undergraduate design of distillation column: Methodology development. Digitital Chemical Engineering, 9. https://doi.org/10.1016/j.dche.2023.100126
Kumar, S., Rao, P., Singhania, S., Verma, S., & Kheterpal, M. (2024). Will artificial intelligence drive the advancements in higher education? A tri-phased exploration. Technological Forecasting and Social Change, 201. https://doi.org/10.1016/j.techfore.2024.123258
Loor, J. K., Chóez, J. E., & Maldonado, K. (2021). Plataformas virtuales y su impacto en el proceso de enseñanza-aprendizaje: plataformas virtuales y su impacto en el proceso de enseñanza-aprendizaje. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 5(3), 213–220. https://doi.org/10.47230/unesum-ciencias.v5.n3.2021.454
Lu, Q., Yao, Y., Xiao, L., Yuan, M., Wang, J., & Zhu, X. (2024). Can ChatGPT effectively complement teacher assessment of undergraduate students’ academic writing? Assessment & Evaluation in Higher Education, 49(5), 616–633. https://doi.org/10.1080/02602938.2024.2301722
Mero, K. V., Toala, F. J., Merchán, E. J., & Barcia, M. R. (2025). Aplicación del modelo SAMR en la ambientación inteligente de los laboratorios de la Carrera de TI_UNESUM para mejorar la experiencia de aprendizaje. Recimundo, 9(1), 928–936. https://doi.org/10.26820/recimundo/9.(1).enero.2025.928-936
Mhlanga, D. (2023). Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4354422
Nikolic, S., Sandison, C., Haque, R., Daniel, S., Grundy, S., Belkina, M., … Neal, P. (2024). ChatGPT, Copilot, Gemini, SciSpace and Wolfram versus higher education assessments: An updated multi-institutional study of the academic integrity impacts of generative artificial intelligence (GenAI) on assessment, teaching and learning in engineering. Australasian Journal of Engineering Education, 29(2), 126–153. https://doi.org/10.1080/22054952.2024.2372154
Puentedura, R. R. (2006). Transformation, Technology, and Education. Hippasus. https://hippasus.com/resources/tte/
Suryanto, T. L. M., Wibawa, A. P., Hariyono, H., & Nafalski, A. (2023). Evolving conversations: A review of chatbots and implications in natural language processing for cultural heritage ecosystems. International Journal of Robotics and Control Systems, 3(4), 52. https://doi.org/10.31763/ijrcs.v3i4.1195
Published
Issue
Section
License
Copyright (c) 2025 Roca. Scientific-educational publication of Granma province.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.