Morphological response in Morus alba genotypes under saline stress induced with Sodium Chloride (Original)
Keywords:
Sodium Chloride; electrical conductivity; in vitro; mulberry; salinityAbstract
The cultivation of mulberry is of great importance in Cuba for animal feed, however, various factors affect the production of biomass in this crop, and not all varieties respond in the same way to salinity stress conditions. Therefore, this work aimed to evaluate the morphological response of four mulberry genotypes subjected to salt stress conditions induced with sodium chloride. The percentage of cuttings with shoots and/or roots was evaluated; number of shoots per cuttings; and the length of the root, in propagules from the field of the varieties Acorazonada, Criolla, Yu-62 and Doña Betty placed in jars with water with different values of electrical conductivity 0.5; 1.0; 2.0; 4.0 and 6.0 dS.m-1, for 30 days of culture. The results showed that the increase in Sodium Chloride concentrations affected the morphological response of the plants in the four genotypes evaluated; where the Doña Betty variety showed the greatest susceptibility to this factor during cutting sprouting. In conclusion, salt stress affected the morphological response of the genotypes studied, where the Acorazonada and Criolla varieties had the highest tolerance up to 2.0 dS.m-1 of sodium chloride.
References
Bahi, M. & Pérez, J. (2021). Multiplicación de brotes de morera variedad Doña Betty en Sistema de Inmersión Temporal. REDEL, Revista Granmense de Desarrollo Local, 5(1), 64-73. https://revistas.udg.co.cu/index.php/redel/article/view/2157
Banyal, R., Sanwal, S. K., Sharma, P. C., Yadav, R. K.& Dagar, J. C. (2019). Fruit and vegetable-based saline agricultural systems for nutritional and livelihood security. En: Dagar, J. C., Yadav, R. K. & Sharma, P. C. (eds.). (2019). Research developments in saline agriculture. Springer. https://doi.org/10.1007/978-981-13-5832-6_24
Castillo, Y. & Miranda, I. (2014). CompaProp: Sistema para comparación de proporciones múltiples. Revista de Protección Vegetal, 29 (3), 231-234. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522014000300013
Chen, X., Gao, Y., Zhang, D., Gao,Y., Song, Y., Wang, H., Ma, B. & Li, J. (2023). Evaluation of salinity resistance and combining ability analysis in the seedlings of mulberry hybrids (Morus alba L.). Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology, 29 (4), 543–557.
https://doi.org/10.1007/s12298-023-01304-w
De Morais, M.B., Barbosa-Neto, A. G., Willadino, L., Ulisses, C. & Junior, T.C. (2019). Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): biochemical and physiological aspects. Journal of Plant Growth Regulation, 38 (2), 683–700.
https://link.springer.com/article/10.1007/s00344-018-9882-z
Fernandez, G. (1992). Effective selection criteria for assessing stress tolerance. International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. https://doi.org/10.22001/wvc.72511
Gai, Y., Ji, X., Mu, Z., Liu, X. & Wang, H. (2006). Effect of NaCl stress on superoxide dismutase and catalase of mulberry. Canye Kexue, 32, 99–102. https://www.semanticscholar.org/paper/Effect-of-NaCl-Stress-on-Superoxide-Dismutase-and-Ying-Xian/1eccdcf0a2c494077aa4c694dfea00279ff9ee34
Gómez, R. & Pérez, J.L. (2020). Aclimatización en casa de cultivo de plantas in vitro de Morus alba variedad Acorazonada. REDEL, Revista Granmense de Desarrollo Local, 4, 875-886. https://revistas.udg.co.cu/index.php/redel/article/view/1927/3590
Herrera, P., Pujol, R., Cid, G., Méndez, M. & Alarcón, R. (2011). Problemas del drenaje agrícola en Cuba. Revista Ingeniería Agrícola, 1(1), 21–32. https://www.redalyc.org/pdf/5862/586262032003.pdf
Liu, Y., Ji, D., Turgeon, R., Chen, J., Lin, T., Huang, J., Luo, J., Zhu, Y., Zhang, C. & Zhiqiang, L. (2019). Physiological and proteomic responses of mulberry trees (Morus alba L.) to combined salt and drought stress. International Journal of Molecular Sciences, 20(10). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566768/
Lu, N., Luo, Z., Ke, Y., Dai, L., Duan, H., Hou, R., Cui, B., Dou, S., Zhang, Y., Sun, Y. & Li, Y. (2017). Growth, physiological, biochemical, and ionic responses of Morus alba L. seedlings to various salinity levels. Forests, 8(12), 488. https://www.mdpi.com/1999-4907/8/12/488
Mishra, P., Mishra, J. & Kumar, N. (2021). Plant growth promoting bacteria for combating salinity stress in plants – Recent developments and prospects: A review. Microbiological Research, 252, 126861. https://www.sciencedirect.com/science/article/pii/S0944501321001671
Munns, R. (2011). Plant adaptations to salt and water stress: Differences and commonalities. Advances in Botanical Research, 57, 1–32. https://doi.org/10.1016/B978-0-12-387692-8.00001-1
Nguyen, H.T., Stanton, D.E., Schmitz, N., Farquhar, G.D. & Ball, M.C. (2015). Growth responses of the mangrove Avicennia marina to salinity: Development and function of shoot hydraulic systems require saline conditions. Annals of Botany, 115 (3), 397–407. https://doi.org/10.1093/aob/mcu257
Pérez, J.L., Bahi, M. & Silva, J.J. (2019). Efecto del tipo de explante y la desinfección en el establecimiento in vitro de Morera variedad Criolla. REDEL, Revista Granmense de Desarrollo Local, 3(4), 177-187. https://revistas.udg.co.cu/index.php/redel/article/view/1133
Pérez, L. S. (2015). Respuesta al estrés salino inducido con NaCl, en los cultivares de Musa ‘Grande naine’ (AAA) y ‘Pelipita’ (ABB) en fase de aclimatización. [Tesis de pregrado, Universidad Central “Martha Abreu” de Las Villas]. https://dspace.uclv.edu.cu/server/api/core/bitstreams/4f609345-19ca-41eb-aa2f-833df5d84cd5/content
Shahid, S.A., Zaman, M. & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. En: Zaman, M., Shahid, S.A. & Heng, L. (2018). Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer. pp: 43-53. https://doi.org/10.1007/978-3-319-96190-3_2
Singh, D., Kaur, S. & Kumar, A. (2020). In vitro drought tolerance in selected elite clones of Eucalyptus tereticornis Sm. Acta Physiologiae Plantarum, 42, 17. https://link.springer.com/article/10.1007/s11738-019-3009-4
Wulandari, Y.R., Triadiati, T., Sulistyaningsih, Y.C., Suprayogi, A. & Rahminiwat, M. (2021). Salinity stress affects growth and physiology of mulberry (Morus sp.). IOP Conference. Series: Earth and Environmental Science, 948, 012049. https://iopscience.iop.org/article/10.1088/1755-1315/948/1/012049/pdf
Zelm, E., Zhang, Y. & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review Plant Biology, 71, 403–433. https://pubmed.ncbi.nlm.nih.gov/32167791/








