Didactic strategy applying artificial intelligence and its impact on university teaching and learning (Original).

Authors

Keywords:

artificial intelligence; teaching learning; teaching strategy

Abstract

The teaching strategy applying artificial intelligence in university teaching emerges as a crucial educational innovation. The relevance of this integration lies in its ability to transform the learning experience, personalizing instruction, improving feedback and promoting student autonomy. The main objective of this research was to analyze how artificial intelligence impacts teaching-learning processes, focusing on the optimization of pedagogical methods and the development of 21st century skills. The methodology involved selecting appropriate artificial intelligence techniques, such as recommendation systems and predictive analytics, to design interactive and adaptive content. Educational chatbots and automatic feedback systems were implemented to improve participation and continuous evaluation. The results demonstrated a positive transformation in the effectiveness of the educational process, evidenced by effective personalization, immediate feedback and development of key skills. The conclusions highlight the importance of this didactic strategy in the evolution of university education, marking its impact on the quality of teaching and learning. Artificial intelligence not only facilitates continuous improvement, but also contributes to the development of essential skills for students, preparing them for the challenges of a globalized and technological environment. This approach not only represents an innovative response to current educational challenges, but also paves the way for the future of higher education. This research was worked together with the research group "Development and Innovation in Information and Communications Technologies".

Downloads

Download data is not yet available.

Author Biographies

  • Kirenia Maldonado Zuñiga, Universidad Estatal del Sur de Manabí. Jipijapa. Manabí. Ecuador.

    Doctorando en Tecnología de la Información y Comunicación. Universidad Nacional de Piura. Perú. Magister en Ciencias de la Educación. Licenciada en Educación Informática. Docente de la maestría en TIC del Instituto de Posgrado Unesum. Docente de la carrera Tecnologías de la Información de la Facultad Ciencias Técnicas en la Universidad Estatal del Sur de Manabí. Jipijapa. Manabí. Ecuador.

  • Raquel Vera Velázquez, Universidad Estatal del Sur de Manabí. Jipijapa. Manabí. Ecuador.

    Máster en Ciencias de la Educación. Licenciada en Matemáticas. Facultad de Ciencias Naturales y de la Agricultura. Universidad Estatal del Sur de Manabí. Jipijapa. Manabí. Ecuador.

  • Kimberly Lisseth Alcivar Loor, Institución Educativa UEP “Teresa Zambrano”. Manta. Ecuador.

    Ingeniera en Contabilidad y Auditoría. Docente de Institución Educativa UEP “Teresa Zambrano”. Manta. Ecuador.

References

Ayuso, D., & Gutiérrez, P. (2022). La Inteligencia Artificial como Recurso Educativo durante la Formación Inicial del Profesorado. RIED-Revista Iberoamericana de Educación a Distancia, 25(2), 347-362. https://doi.org/10.5944/ried.25.2.32332

Eaton, E., Koenig, S., Schulz, C., Maurelli, F., Lee, J., Eckroth, J., Crowley, M., Freedman, R. G., Cardona, R. E., Machado, T., & Williams, T. (2018). Blue Sky Ideas in Artificial Intelligence Education from the EAAI 2017 New and Future AI Educator Program. AI Matter, 3(4), 23-31. https://doi.org/10.1145/3175502.3175509

Kaklauskas, A. (2015). Student progress assessment with the help of an intelligent pupil analysis system. Engineering Applications of Artificial Intelligence, 26, 35-50. https://doi.org/10.1016/j.engappai.2012.01.006

León, G. C., & Viña, S. M. (2017). La inteligencia artificial en la educación superior. Oportunidades y Amenazas. Innova Research Journal, 2(8), 412-422. https://doi.org/10.33890/innova.v2.n8.1.2017.399

Meneses, E. L., & Fernández, J. (2020). Tecnologías de la información y la comunicación y diversidad funcional: conocimiento y formación del profesorado de Navarra. IJERI: Revista internacional de investigación e innovación educativas, (14), 59-75. https://doi.org/10.46661/ijeri.4407

Naqa I., y Murphy, M. J. (2015) ¿What is Machine Learning? En I. Naqa, R. Li & M. J. Murphy (Eds.), Machine Learning in Radiation Oncology (pp. 3-11). Springer. https://doi.org/10.1007/978-3-319-18305-3_1

Ocaña, Y., Valenzuela, L. A., & Garro, L. L. (2019). Artificial Intelligence and its Implications in Higher Education. Purposes and Representations, 7(2), 536–552. https://doi.org/http://dx.doi.org/10.20511/pyr2019.v7n2.274

Padilla, A. L., Gámiz, V., & Romero, M. A. (2020). Evolución de la competencia digital docente del profesorado universitario: incidentes críticos a partir de relatos de vida. Educar, 56(1), 109-27. https://doi.org/10.5565/rev/educar.1088

Peñaherrera, P., Cunuhay, W., Nata, J., & Moreira, L. (2022). Implementación de la Inteligencia Artificial (IA ) como Recurso Educativo. Revista: Recimundo, 2, 404–413. https://doi.org/10.26820/recimundo/6.(2).abr.2022.402-413

Rodríguez, J. D., Moreno, J. M., Román, M., & Robles, G. (2021). Evaluation of an Online Intervention to Teach Artificial Intelligence with LearningML to 10-16-Year-Old Students [Conference Paper]. SIGCSE ’21, Virtual Event, USA. https://doi.org/10.1145/3408877.3432393

Sánchez, E. M., & Lama, M. (2007). Monografía: Técnicas de la Inteligencia Artificial Aplicadas a la Educación Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 11(33), 7-12. https://bit.ly/3FVMZA4

Torres, F., & Yucra, Y. J. (2022). Técnicas de inteligencia artificial en la valoración de la enseñanza virtual por estudiantes de nivel universitario. Revista Internacional de Humanidades, 11, 1–1. https://doi.org/10.37467/revhuman.v11.3853

Wang D., Hou, H., Zhan, Z., Xu, J., Liu, Q., & Ren, G. (2015). A problem solving oriented intelligent tutoring system to improve students’ acquisition of basic computer skills. Computers & Education, 81, 102-112. https://doi.org/10.1016/j.compedu.2014.10.003

Yang, F. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers & Education, 123, 97-108. https://doi.org/10.1016/j.compedu.2018.04.006

Published

2024-03-27

Issue

Section

Artículos

How to Cite

Didactic strategy applying artificial intelligence and its impact on university teaching and learning (Original). (2024). Roca. Scientific-Educational Publication of Granma Province., 20(3), 53-69. https://revistas.udg.co.cu/index.php/roca/article/view/4457

Most read articles by the same author(s)

1 2 > >>