Affectation of full grains per panicle in Oryza sativa L. variety Reforma, by high temperatures (Original)
Keywords:
rice; controlled conditions; cultivate reformation; temperaturesAbstract
Future efforts in rice cultivation should aim to produce varieties that are widely tolerant of high temperatures. The article show the results of the experiment was implemented under controlled conditions in the Seed Testing Laboratory of the Manuel Espinosa Ramírez Processing Plant of the Granma Seed Base Business Unit, in order to evaluate the number of filled grains per panicle under controlled conditions in the Reforma cultivar. Due to high temperatures. Rice plants 10 days after germination were selected according to the uniformity of the number of photosynthetically active leaves and the length of the seedling. At the beginning of the anthesis, three pots with rice plants were placed in a chamber for growth tests with a relative humidity of 70 % and different temperature levels that began at 35 oC and increased every 0.5 oC until reaching 39.5oC. For the control treatment, the temperature was maintained at 32.3 oC. The percentage of affected grains filled by panicles will be decreased in relation to the control. It is evident that from 35.0 oC the number of filled grains per panicle -1 begins to decrease and reaches affectations of more than 20 % at temperatures above 39.0 oC.
References
Fahad, S., Ihsan, M. Z., Khaliq, A., Daur, I., Saud, S., Alzamanan, S., Nasim, W., Abdullah, M., Khan, I. A., Wu , C., Wang, D., & Huang, J. (2018). Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science, 64(11), 1473-1488. https://doi.org/10.1080/03650340.2018.1443213
Hashida, Y., Tezuka, A., Nomura, Y., Kamitani, M., Kashima, M., Kurita, Y., & Nagano, A. J. (2022). Fillable and unfillable gaps in plant transcriptome under field and controlled environments. Plant Cell & Environment, 45(8), 2410-2427. https://www.researchgate.net/publication/360838711
Hu, S., Wang, Y., & Yang, L. (2021). Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: a meta-analysis of 20 years FACE studies. Science of The Total Environment, 764 (10). https://doi.org/10.1016/j.scitotenv.2020.142797
Jung, W. S., Lee, K. J., & Lee, B. W. (2015). Responses of spikelet fertility to air, spikelet, and panicle temperatures and vapor pressure deficit in rice. Journal of Crop Science and Biotechnology, 18, 209–218. https://doi.org/10.1007/s12892-015-0116-7
Kingra, P. K., Kaur, R., & Kaur, S. (2019). Climate change impacts on rice (Oryza sativa) productivity and strategies for its sustainable management. The Indian Journal of Agricultural Sciences, 89(2). https://www.researchgate.net/publication/331318260
Kraehmer, H., Jabran, K., Mennan, H., & Chauhan, B. S. (2016). Global distribution of rice weeds-a review. Crop Protection, 80, 73–86. https://doi.org/10.1016/j.cropro.2015.10.027
Lee, K. J., Kim, D. I., Choi, D. H., & Lee, B. W. (2015). Rice grain-filling characteristics under elevated air temperature in a temperate region. Journal of Crop Science and Biotechnology, 18, 231–236. https://doi.org/10.1007/s12892-015-0100-2
Mendoza, H. E., Loor, Á. C., & Vilema, S. F. (2019). El arroz y su importancia en los emprendimientos rurales de la agroindustria como mecanismo de desarrollo local de Samborondón. Universidad y Sociedad, 11(1). https://rus.ucf.edu.cu/index.php/rus/article/view/1128
Nettleton, D. F., Katsantonis, D., Kalaitzidis, A., Sarafijanovic-Djukic, N., Puigdollers, P., & Confalonieri, R. (2019). Predicting rice blast disease: machine learning versus process based models. BMC Bioinformatics, 20(1), 514. https://doi.org/10.1186/s12859-019-3065-1
Numajiri, Y., Yoshino, K., Teramoto, S., Hayashi, A., Nishijima, R., Tanaka, T., Hayashi, T., Kawakatsu, T., Tanabata, T., & Uga, Y. (2021). iPOTs: Internet of Things‐based pot system controlling optional treatment of soil water condition for plant phenotyping under drought stress. The Plant Journal, 107(5), 1569-1580. https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.15400
Oda, A., Amikura, K., Kuchitsu, K., & Ishikawa, M. (2008). Phosphoric acid-assisted constant relative humidity chambers utilized for controlled deterioration of rice seeds. Seed Science and Technology, 36(3), 699-709. https://www.researchgate.net/publication/233580145
Sandaruwani, K. H. C., Basnayake, B. F. A., Mowjood, M. I. M., & Ariyawansha, R. T. K. (2022). Enhancement of Germination of Oryza sativa L. (Rice) Seeds using Solar Concentrators. Agricultural Science Digest. https://arccarticles.s3.amazonaws.com/OnlinePublish/Final-article-attachemnt-with-doi-DF-405-6089603e9087340b9bdcbbb1.pdf
Sistema de Información Simplificado Agrícola. (2022). Arroz 2021-2022. Ministerio de Agricultura, Ganadería y Pesca Argentina. https://www.argentina.gob.ar/sites/default/files/if_sisa_arroz_21-22.pdf
Song, J. S., Im, J. H., Park, Y. H., Lim, S. H., Yook, M. J., Lee, B. W., Kim, J. W. & Kim, D. S. (2021). Modeling the Effects of Elevated Temperature and Weed Interference on Rice Grain Yield. Frontiers in Plant Science, 12. https://www.frontiersin.org/articles/10.3389/fpls.2021.663779/full
Suárez, E., & Rivero, L. E. (Eds.). (2020). Instructivo Técnico Cultivo de Arroz. Asociación Cubana de Técnicos Agrícolas y Forestales.
Wang, B., Cai, W., Li, J., Wan, Y., Li, Y., Guo, C., Wilkes, A., You, S., Qin, X., Gao, K., & Liu, K. (2020). Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice cropping system. Field Crops Research, 248. https://doi.org/10.1016/j.fcr.2020.107735
Wu, C., Cui, K., Li, Q., Li, L., Wang, W., Hu, Q., Ding, Y., Li, G., Fahad, S., Huang, J., Nie, L. & Peng, S. (2021). Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Scientific Reports, 11. https://www.nature.com/articles/s41598-021-93079-x
Wu, C., Tang, S., Li, G., Wang, S., Fahad, S. & Ding, Y. (2019). Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. Plant Biology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873875
Ye, C., Ishimaru, T., Lambio, L., Li, L., Long, Y., He, Z., Htun, T., Tang, S., & Su, Z. (2022). Marker-assisted pyramiding of QTLs for heat tolerance and escape upgrades heat resilience in rice (Oryza sativa L.). Theoretical and Applied Genetics, 135(4), 1345-1354. https://www.researchgate.net/publication/359389138