Agronomical response of tomato crop to application of native actinomycetes strains (Original)
Keywords:
tomato; actinomycetes; yield; inoculationAbstract
The present research was carried out under Intensive Orchard conditions “El Gigante” belongs to Manzanillo municipality, Granma province since October/2015 to January/2016 on Cambisol soil in order to evaluate the agronomical response of tomato crop (Solanum lycopersicum L. cv. Vyta) to application of three native actinomycetes strains (A23M12, A18M7 y A5M4). The plant growth variables: plant height, fruits number for plant, fruit fresh mass and crop yield were evaluated. An economical analysis also was performed. The A23M12 strain showed the best results both for all studied plant growth variables as crop yield with 43,8 t ha-1. The inoculation of this bioproduct had a very high economical impact on this crop since decreased the production costs and significantly increased the profit and rentability index in comparison with control plants (not inoculated plants).
References
AOAC. (1998).Official Methods of Analysis. 16th. Edition. Association of Official Analytical Chemists. Association of Analytical Communities. Washington, D.C. USA. S. William Editor.
Beneduzi, A., Peres, D., Vargas, L.K., Bodanese, M.H., y Passaglia, L.M.P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39: 311–320.
Bernhardt, E.S.; Rosi, E.J.; y Gessner, M.O. (2017). Synthetic chemicals as agents of global change. Frontiers in Ecology and Environment, 15:84–90.
FAO (2019). Datos estadísticos sobre el cultivo del tomate. Disponible en: http://www.fao.org/faostat/en/#data/QC. [Consultado: 7 de septiembre del 2020].
Franco. M. (2009). Utilización de los actinomicetos en procesos de biofertilización. Revista Peruana de Biología, 16(2):239-242.
Franco, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M.X., & Barea, J.M. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied and Soil Ecology, 45:209-217.
Gouda, S., Kerry, R.G., Das, E., Paramithiotis, S., Shin, H.S., & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Resources, 206:131-140.
Hernández, A., Pérez, J., Bosch, J., y Rivero, R.P. (2015). Clasificación de los suelos de Cuba. Ediciones INCA, Mayabeque, Cuba. 93 p.
Lu, T., Ke, M.J., Lavoie, M., Jin, Y.T., Fan, X.J., Zhang, Z.X., Fu, Z.W., Sun, L.W., Gillings, M., & Penuelas, J. (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbionts, 6: e213.
MINAG. (2017). Manual Técnico para organopónicos, huertos intensivos y organoponía semiprotegida. INIFAT, La Habana, Cuba. 156 p.
Patil, H.J., Srivastava, A.K., Singh, D.A.,Chaudhari, B.L., & Arora, D.K., (2011). Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum L.) enhances bioprotection against Rhizoctonia solani. Crop Protection, 30:1269-1273.
Sreeja, S.J., & Surendra, K. (2013). Bio-efficacy of endophytic actinomycetes for plant growth promotion and management of bacterial wilt in tomato. Pest Management in Horticultural Ecosystems, 19(1):63-66.
Suryaminarsih, P., Sri-, W., Retno, I., & Mindari, W. (2020). Screening and identification of Actinomycetes produced chitinolytic from suppression soil as biological agents of fruit flies (Bactrocera sp). Eurasian Journal of Biosciences, 14:977-982.
Zeffa, D.M., Perini, L.S., Silva, M.S., De-Sousa, N,V., Scapim, C.A., & De-Oliveira, A.L.M., Do-Amaral, A.T., & Goncalves, L.S.A. (2019). Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PloS One, 14: e0215332.