“Q-análogos de la constante Apéry’s” (Revisión)
Keywords:
Apéry’s constant, Riemann zeta function, q-hypergeometric functionAbstract
In this paper, we give a summary introduction to the Riemann zeta function. We also provide a brief overview of the q-calculus topics which are necessary to understand the main results. Finally, we give some q-representations for the q-analogue of the Apéry’s constant.
Downloads
References
Alzer, H. (2003). Remark on a double-inequality for the Riemann zeta function, Expo. Math., Vol. 23, pp. 349–352.
Arvesú, J. (2012), Orthogonal forms: A key tool for deducing Apéry’s recurrence relation, J. Approx. Theory, accepted.
Choi, J. and Srivastava, H. M. (2000). Certain classes of series associated with the Zeta function and multiple gamma functions, J. of Computational and Applied Mathematics, Vol. 118, pp. 87–109.
Ernst, T. (2003). A Method for q-Calculus, J. of Nonlinear Mathematical Physics, Vol. 10, No. 4, pp. 487–525.
Ernst, T. (2009). q-Calculus as operational algebra, Proceedings of the Estonian Academy of Sciences, Vol. 58, No. 2, pp. 73–97.
Fitouhi, A., Bettaibi, N., Binous, W., Elmonser, H. B., (2009). An uncertainty principle for the basic Bessel transform, Ramanujan J, DOI 10.1007/s11139-007-9117-6., Vol. 18, pp. 171–182.
Gasper, G. and Rahman. M. (2004). Basic hypergeometric series, Cambridge University Press.
Kaneko, M., Kurokawa, N. and Wakayama, M. A variation of Euler’s approach to values of the Riemann zeta function, arXiv:math/0206171v2 [math.QA], (31 July 2012).
Kim, T. (2004). q-Riemann zeta function, IJMMS, PII. S0161171204307180, pp. 599–605.
Koekoek, R. and Swarttouw, R. F. (1998). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology.
Nesterenko, Yu. V. (2003). Integral identities and constructions of approximations to zeta values, J. de Theorie des Nombres de Bordeaux, Vol. 15, pp. 535–550.
Nikiforov, A. F., Uvarov, V. B. (1988). Special Functions in Mathematical Physics, Birkhauser Verlag, Basel.
Postelmans, K. and Van Assche, W. (2007). Irrationality of ζ q (1) and ζ q (2), J. Number Theory, Vol. 126, pp. 119–154.
Van Assche, W. (1999). Multiple orthogonal polynomials, irrationality and transcendence. Contemporary Mathematics, Vol. 236, pp. 325–342.
udilin, W., (2002). An elementary proof of Apéry’s theorem, E-print math. NT/0202159, Moscow Lomonosov State University, pp. 1–8.