“Q-ANALOGUE OF THE APÉRY’S CONSTANT” (Review)
Palabras clave:
constante de Apéry, función zeta de Riemann, función q-hipergeométrica.Resumen
En este artículo damos un resumen introductorio de la función Zeta de Riemann. También proporcionamos una breve visión de la temática q- cálculos la cual es necesaria para un entendimiento de los principales resultados. Finalmente, damos algunas representaciones para los q-análogos de la constante Apéry´s.
Descargas
Referencias
Alzer, H. (2003). Remark on a double-inequality for the Riemann zeta function, Expo. Math., Vol. 23, pp. 349–352.
Arvesú, J. (2012), Orthogonal forms: A key tool for deducing Apéry’s recurrence relation, J. Approx. Theory, accepted.
Choi, J. and Srivastava, H. M. (2000). Certain classes of series associated with the Zeta function and multiple gamma functions, J. of Computational and Applied Mathematics, Vol. 118, pp. 87–109.
Ernst, T. (2003). A Method for q-Calculus, J. of Nonlinear Mathematical Physics, Vol. 10, No. 4, pp. 487–525.
Ernst, T. (2009). q-Calculus as operational algebra, Proceedings of the Estonian Academy of Sciences, Vol. 58, No. 2, pp. 73–97.
Fitouhi, A., Bettaibi, N., Binous, W., Elmonser, H. B., (2009). An uncertainty principle for the basic Bessel transform, Ramanujan J, DOI 10.1007/s11139-007-9117-6., Vol. 18, pp. 171–182.
Gasper, G. and Rahman. M. (2004). Basic hypergeometric series, Cambridge University Press.
Kaneko, M., Kurokawa, N. and Wakayama, M. A variation of Euler’s approach to values of the Riemann zeta function, arXiv:math/0206171v2 [math.QA], (31 July 2012).
Kim, T. (2004). q-Riemann zeta function, IJMMS, PII. S0161171204307180, pp. 599–605.
Koekoek, R. and Swarttouw, R. F. (1998). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology.
Nesterenko, Yu. V. (2003). Integral identities and constructions of approximations to zeta values, J. de Theorie des Nombres de Bordeaux, Vol. 15, pp. 535–550.
Nikiforov, A. F., Uvarov, V. B. (1988). Special Functions in Mathematical Physics, Birkhauser Verlag, Basel.
Postelmans, K. and Van Assche, W. (2007). Irrationality of ζ q (1) and ζ q (2), J. Number Theory, Vol. 126, pp. 119–154.
Van Assche, W. (1999). Multiple orthogonal polynomials, irrationality and transcendence. Contemporary Mathematics, Vol. 236, pp. 325–342.
udilin, W., (2002). An elementary proof of Apéry’s theorem, E-print math. NT/0202159, Moscow Lomonosov State University, pp. 1–8.