Method for 3d visualization of digital elevation models. (Review)
Keywords:
GPU; restricted quadtree; multiresolution triangulation; 3D visualizationAbstract
The visualization of geographic information on the Web represents an area of science that has gained importance with scientific and technical development. The methods commonly used perform the processing of information on the servers generating images that are sent to the client stations for viewing. However, the way of representing the information generates high data traffic from the server stations to the client stations and the computation resources used by the client stations are not exploited. The present investigation describes a solution to the problematic raised from the implementation of a model for the efficient visualization of land surfaces in three dimensions on the Web platform. The proposed method exploits the resources available in the client computer, achieving high quality visualizations with tens of frames per second. For the visualization of the information, a logical division of the terrain is made in quadrants, allowing the computer to make use of a spatial data structure (fttree) to manipulate the requests to the server as well as the operational memory control of the data associated with those quadrants that are being visualized. It also describes a triangulation model based on the Restricted Quadtree (RQT) and details the process of simplification and prevention of cracks.
Downloads
References
Arias-Naranjo, G., & al., e. (2014). Gestión eficiente de modelos digitales de elevación para su visualización 3D utilizando procesamiento multinúcleo. Revista Cubana de Ciencias Informáticas, Vol. 8, 14-28.
Cignoni, P., & al., e. (2003). Planet-sized batched dynamic adaptive meshes (P-BDAM). Proceedings of the 14th IEEE Visualization 2003 (VIS'03), 20.
Corral, A., Vassilakopoulos, M., & Manolopoulos, Y. (1999). Algorithms for joining R-trees and linear region quadtrees. International Symposium on Spatial Databases, 251-269.
De Berg, M., & al., e. (2000). Computational geometry. Computational geometry. s.l. : Springer.
De Boer, W. H. (2000). Fast terrain rendering using geometrical mipmapping Unpublished paper. from http://www. flipcode. com/articles/article geomipmaps. pdf.
Escrivà, M., Jaime, A., Gutiérrez, A., & Beltrán-Meneu, M. (2017). Geometría 3D y talento matemático: Uno.
Evans, W., Kirkpatrick, D., & Townsend, G. (2001). Right-triangulated irregular networks. . Springer: Algorithmica, Vol. 30, 264-286.
Fuentes, A. R., Garcia, I. G., Reyes, Y. M., Perdomo, G. N., Guanche, P. M., & Palumbo, A. (2018). SONOHISTEROGRAFÍA 3D. Seram.
Hernández Muñoz, Ó., Sánchez Ortiz, M. A., Calvo Manuel, A. M., Martín, M., Adolfo, P., Legido García, M. V., . . . de las Heras Vera, D. (2018). Aplicaciones de las nuevas herramientas de visualización de modelos 3D y realidad virtual en Internet a la docencia de la conservación y restauración del patrimonio, el diseño, y las bellas artes.
Herrera, S. I., Sanz, C. V., Morales, M. I., Palavecino, R., Maldonado, M., Irurzun, I., . . . Suárez, G. I. (2018). M-learning con Realidad Aumentada basada en Objetos 3D. Paper presented at the XX Workshop de Investigadores en Ciencias de la Computación (WICC 2018, Universidad Nacional del Nordeste).
Lindstrom, P., & al, e. (1996). Real-time, continuous level of detail rendering of height fields. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 109-118.
Mar, O., Santana, I., & Gulín, J. (2017). Competency assessment model for a virtual laboratory system and distance using fuzzy cognitive map. Revista Investigación Operacional, 38(2), 170-178.
Over, M., & al, e. (2010). Generating web-based 3D City Models from OpenStreetMap: The current situation in Germany. 6, s.l. . Computers, Environment and Urban Systems, Vol. 34, 496-507.
Pajarola, R. (1998). Large scale terrain visualization using the restricted quadtree triangulation. Visualization'98. Proceedings, 19-26.
Pajarola, R. (2002). Overview of quadtree based terrain triangulation and visualization. Technical Report UCI-ICS TR 02-01.
Samet, H. (1990). Applications of Spatial Data Structures.
To, D., Lau. , WH., R., & Green, M. (2001). An adaptive multiresolution method for progressive model transmission. . Teleoperators and Virtual Environments Vol. 10, 62-74.
Ulrich, T. (2002). Rendering massive terrains using chunked level of detail control. SIGGRAPH Course Notes, Vol. 3.
Valle-Martínez, Y., & Ortiz-Rojas, J. (2011). Sistemas de Información. Representación de Superficies de Terrenos para su Visualización en Tres Dimensiones. Ciencias de la Información, Vol. 42, 57-64.
Vega, G. E. (2013). Algoritmo de recortes y de niveles de detalles para el incremento de la velocidad de visualización de modelos 3D en dispositivos de bajo coste. . 3ciencias: cuadernos de desarrollo aplicados a las TIC, Vol. 2(No.2).
Zhu, C., Tan, E. C., & Chan, K. (2003). 3D Terrain visualization for Web GIS. Map Asia, 13-15.