An evaluation procedure based on expert judgment with a fuzzy approach. (Original)

Authors

  • Miguel Cruz Ramírez Universidad de Holguín

Keywords:

expert knowledge; expert method; fuzzy sets; multi criteria decision making; TOPSIS; ecological economy

Abstract

The evaluation based on expert knowledge is useful for the hierarchy of alternatives, the evaluation of results, the redefinition of strategies, among different aspects related to decision-making and strategic management. The processing of expert information confronts a problem, related to the subjective and imprecise nature of the data, which contrasts with the need for objective and precise analysis. In this paper, a seven-stage procedure is presented, aimed at expert evaluation in the field of educational research. The procedure is based on the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS). This technique is combined with the use of triangular fuzzy numbers, in order to reduce the subjectivity that encompasses the expert evaluation criteria. As an example, the processing is implemented in the evaluation of four profiles of scientific research projects. The latter are evaluated by 20 experts, taking into account nine indicators related to the ecological economy, as a basic aspect of sustainable development in prospective terms. The application of the procedure is useful to demonstrate its potential, in the framework of the application of the method of expert judgment in educational research.

Downloads

Download data is not yet available.

Author Biography

  • Miguel Cruz Ramírez, Universidad de Holguín

    Prof. Titular

References

Ashtiani, B., Haghighirad, F., Makui, A. Montazer, G. (2009). Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets.Applied Soft Computing, 9(2), 457-461.doi: 10.1016/j.asoc.2008.05.005
Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Berlin: Springer. doi: 10.1007/978-3-642-29127-2
Barros, L. C., Bassanezi, R. C., &Lodwick, W. A. (2017). A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics.Theory and Applications. Berlin: Springer. doi: 10.1007/978-3-662-53324-6
Bělohlávek, R., Dauben, J. W., &Klir, G. J. (2017).Fuzzy Logic and Mathematics: A Historical Perspective. Oxford: Oxford University Press. doi:10.1093/oso/9780190200015.001.0001
Chaghooshi, A. J., Fathi, M. R., &Kashef, M. (2012).Integration of Fuzzy Shannon’s Entropy with fuzzy TOPSIS for industrial robotic system selection.Journal of Industrial Engineering and Management, 5(1), 102-114. doi: 10.3926/jiem.397
Grzegorzewski, P. (2004). Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric.Fuzzy Sets and Systems, 148(2), 319-328. doi: 10.1016/j.fss.2003.08.005
Hwang, C. L., & Yoon, K. (1981).Multiple Attributes Decision Making Methods and Applications. Berlin: Springer. doi:10.1007/978-3-642-48318-9
Liao, H., Xu, Z.,&Zeng, X.-J. (2014). Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. InformationSciences, 271, 125-142. doi: 10.1016/j.ins.2014.02.125
López, E. J., Pino, J. R., & Sosa, M. (2013). La necesidad de medir el desarrollo local con indicadores de economía ecológica. Universidad y Sociedad, 5(2), 1-6. https://rus.ucf.edu.cu
Park, J. H., Park, I. Y., Kwun, Y. C., & Tan, X. (2011). Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment.Applied Mathematical Modelling, 35(5), 2544-2556.doi: 10.1016/j.apm.2010.11.025
Szmidt, E., &Kacprzyk, J. (2000).Distances between intuitionistic fuzzy sets.Fuzzy Sets and Systems, 114(3), 505-518. doi:10.1016/S0165-0114(98)00244-9
Wang, T.-C., & Chang, T.-H.(2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment.Expert Systems with Applications, 33(4), 870-880. doi: 10.1016/j.eswa.2006.07.003
Wan, T.-C., & Lee, H.-D. (2009). Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert Systems with Applications, 36(5), 8980-8985.doi: 10.1016/j.eswa.2008.11.035
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/S0019-9958(65)90241-X
Zimmermann, H.-J.(1990). Fuzzy Set Theory and its Applications. NY: Springer. doi: 10.1007/978-94-015-7949-0

Published

2020-06-11

Issue

Section

Artículos

How to Cite

An evaluation procedure based on expert judgment with a fuzzy approach. (Original). (2020). Roca. Scientific-Educational Publication of Granma Province., 16(1), 797-811. https://revistas.udg.co.cu/index.php/roca/article/view/1684

Most read articles by the same author(s)