Soil fungi: their biological potential for local agricultural development
Keywords:
bioinputs; agricultural communities; growth promotion; nutrient solubilization.Abstract
Local development is an approach that seeks the sustainable economic and social growth of communities. It is oriented towards the efficient use of local capitals such as labor, knowledge and available resources to improve the quality of life of its inhabitants. In this context, soil-dwelling fungi show an important biological potential in terms of agricultural productive improvement and sustainability. Therefore, the present article aims to analyze the potential of soil fungi according to their biological functions and agronomic benefits as an alternative for the improvement of agricultural productivity and sustainability in terms of resilient local development. From the analysis carried out, it became evident that soil fungi are involved in multiple processes in agroecosystems. Among their biological functions is the solubilization of macro and micronutrients necessary for plant nutrition. Certain species have the ability to synthesize organic compounds such as phytohormones and secondary metabolites that promote plant growth, while other fungi have mechanisms of action that allow them to exert antagonistic activity on phytopathogenic species. Therefore, thanks to soil fungi, agricultural systems can be more sustainable and less dependent on toxic chemical inputs, which points to these microorganisms as an alternative for the generation of agricultural bioinputs that contribute to the local development of communities worldwide.
References
Adedayo, A. A. & Babalola, O. O. (2023). Fungi that promote plant growth in the rhizosphere boost crop growth. Journal of Fungi, 9(2), 239. https://doi.org/10.3390/jof9020239
Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J. A., Nicolás, G., López-Climent, M., Gómez-Cadenas, A. & Nicolás, C. (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150(3), 1335–1344. https://doi.org/10.1104/pp.109.139352
Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4),1327-1350. https://doi.org/10.1007/s11274-011-0979-9
Chowdhary, V. A. & Tank, J. G. (2023). Biomolecules regulating defense mechanism in plants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 93(1), 17-25. https://doi.org/10.1007/s40011-022-01387-7
Combatt, E., Pérez, D., Villalba, J., Mercado, J. & Jarma, A. (2020). Macronutrientes en el tejido foliar de albahaca Ocimum basilicum L. en respuesta a la aplicación de nitrógeno y potasio. Revista UDCA Actualidad & Divulgación Científica, 23(2). https://doi.org/10.31910/rudca.v23.n2.2020.1325
Das, P. P., Singh, K. R., Nagpure, G., Mansoori, A., Singh, R. P., Ghazi, I. A., Kumar, A. & Singh, J. (2022). Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 214(1). https://doi.org/10.1016/j.envres.2022.113821
Devi, R., Kaur, T., Kour, D., Rana, K. L., Yadav, A. & Yadav, A. N. (2020). Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystems, 5(1), 21-47. https://doi.org/10.21608/mb.2020.32802.1016
Gu, K., Chen, C-Y., Selvaraj, P., Pavagadhi, S., Yeap, Y. T., Swarup, S., Zheng, W.& Naqvi, N. I. (2023). Penicillium citrinum Provides Transkingdom Growth Benefits in Choy Sum (Brassica rapa var. parachinensis). Journal of Fungi, 9(4), 420. https://doi.org/10.3390/jof9040420
Hasan, H. A. (2002). Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiologica et Immunologica Hungarica, 49(1), 105–118. https://doi.org/10.1556/AMicr.49.2002.1.11
Hasan, R., Lv, B., Uddin, M. J., Chen, Y., Fan, L., Sun, Z., Sun, M. & Li, S. (2022). Monitoring mycoparasitism of Clonostachys rosea against Botrytis cinerea using GFP. Journal of Fungi, 8(6), 567. https://doi.org/10.3390/jof8060567
Hezakiel, H. E., Thampi, M., Rebello, S. & Sheikhmoideen, J. M. (2024). Biopesticides: a green approach towards agricultural pests. Applied Biochemistry and Biotechnology, 196(8), 5533-5562. https://doi.org/10.1007/s12010-023-04765-7
Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. (2021). Plant growth: the What, the How, and the Why. New Phytologist, 232(1), 25-41. https://doi.org/10.1111/nph.17610
Iqbal, M. & Ashraf, M. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 86, 76-85. https://doi.org/10.1016/j.envexpbot.2010.06.002
Janowski, D. & Leski, T. (2022). Factors in the Distribution of Mycorrhizal and Soil Fungi. Diversity, 14(12), 1122. https://doi.org/10.3390/d14121122
Kang, P., Pan, Y., Ran, Y., Li, W., Shao, M., Zhang, Y., Ji, Q. & Ding, X. (2023). Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe. Ecological Indicators, 150, 110224. https://doi.org/10.1016/j.ecolind.2023.110224
Leyva, R., Vega, J., Amezcua, J. C., González, A., Alarcón, A., Diaz, T., Jensen, B. & Larsen, J. (2024). Soil fungal communities associated with chili pepper respond to mineral and organic fertilization and application of the biocontrol fungus Trichoderma harzianum. Applied Soil Ecology, 201, 105523. https://doi.org/10.1016/j.apsoil.2024.105523
Liu, C., Wang, S., Yan, J., Huang, Q., Li, R., Shen, B. & Shen, Q. (2021). Soil fungal community affected by regional climate played an important role in the decomposition of organic compost. Environmental Research, 197, 111076. https://doi.org/10.1016/j.envres.2021.111076
Morrison, E. N., Knowles, S., Hayward, A., Thorn, R. G., Saville, B. J. & Emery, R. J. N. (2015). Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia, 107(2), 245–257. https://doi.org/10.3852/14-157
Mukherjee, P. K., Mendoza-Mendoza, A., Zeilinger, S. & Horwitz, B. A. (2022). Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews, 39, 15-33. https://doi.org/10.1016/j.fbr.2021.11.004
Parra, V. J., Guilcapi, E. D., Velastegui, J. D. & Ortiz, L. P. (2021). Servicios ecosistémicos generados por el fomento de la agrobiodiversidad, manejo del suelo y del territorio en el Centro de Bioconocimiento de la Estación experimental Tunshi-ESPOCH. Polo del Conocimiento: Revista Científico-Profesional, 6(6), 777-794. https://doi.org/10.23857/pc.v6i6.2787
Paya, L. D., Perdomo, D. & Quinchoya, D. K. (2021). Efecto de la aplicación de la hormona Giberelina en el crecimiento y desarrollo del cultivo de Maracuyá (Passiflora edulis) establecido en la vereda Fátima del municipio de La Plata, Huila. Revista Ingeniería y Región, 25, 75–81. https://doi.org/10.25054/22161325.2776
Reineke, G., Heinze, B., Schirawski, J., Buettner, H., Kahmann, R. & Basse, C. W. (2008). Indole‐3‐acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology, 9(3), 339-355.
https://doi.org/10.1111/j.1364-3703.2008.00470.x
Sanzano, A. (s.f). El fósforo del suelo. https://www.academia.edu/30243808/EL_F%C3%93SFORO_DEL_SUELO
Sharma, A., Soares, C., Sousa, B., Martins, M., Kumar, V., Shahzad, B., Sidhu, G., Bali, A. S., Asgher, M., Bhardwaj, R., Thukral, A. K., Fidalgo, F. & Zheng, B. (2020). Nitric oxide‐mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiologia Plantarum, 168(2), 318-344. https://doi.org/10.1111/ppl.13004
Silva, J.M. da, Vilela, P. C., Araújo, V., Toujaguez, R., Carvalho, T.M. & Silvestre, G. (2022). In vitro bioprospecting of rhizospheric fungi associated to cactus (Opuntia cochenillifera) to plant growth promotion. Revista Peruana de Biología, 29(2), 1 - 10. http://dx.doi.org/10.15381/rpb.v29i2.22125
Tamayo, J. F., Michell, L. & Urrea, A. I. (2022). Efecto de la concentración del potasio (K+) sobre el desarrollo morfológico y procesos fisiológicos de plántulas de cinco genotipos de Theobroma cacao L. Revista de la Facultad de Agronomía, 121(2). https://doi.org/10.24215/16699513e094
Vedenicheva, N. & Kosakivska, I. (2023). In search of the phytohormone functions in Fungi: Cytokinins. Fungal Biology Reviews, 45, 100309. https://doi.org/10.1016/j.fbr.2023.100309
Velázquez, M. S., Cabello, M. N., Elíades, L. A., Russo, M. L., Allegrucci, N. & Schalamuk, S. (2017). Combinación de hongos movilizadores y solubilizadores de fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento de plantas de lechuga (Lactuca sativa L.). Revista Argentina de Microbiología, 49(4), 347-355. http://dx.doi.org/10.1016/j.ram.2016.07.005
Verma, P., Yadav, A.N., Khannam, K.S., Saxena, A.K. & Suman, A. (2017). Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte, D.G., Jhala, Y.K., Vyas, R.V., Shelat, H.N. (eds) (2017). Microorganisms for Green Revolution. Springer. pp 125-149. https://doi.org/10.1007/978-981-10-6241-4_7
Wang, Y., Zhu, X., Wang, J., Shen, C. & Wang, W. (2023). Identification of mycoparasitism-related genes against the phytopathogen Botrytis cinerea via transcriptome analysis of Trichoderma harzianum T4. Journal of Fungi, 9(3), 324. https://doi.org/10.3390/jof9030324