Trend analysis of the normalized difference vegetation index in the Casacay river subbasin, Ecuador (1989-2022) (Original).

Authors

Keywords:

NDVI, Casacay, Mann Kendall, Landsat

Abstract

Changes in vegetation cover are indicators that can lead to soil erosion or functional loss. Therefore, the objective of this research was to analyze the trend of the Normalized Difference Vegetation Index in the Casacay River sub-basin for the period 1989-2022. Addressing the evolution of vegetation cover, using Landsat images to obtain the NDVI, in order to identify changes in vegetation and their possible relationship with climate change and human activity. A general trend towards negative NDVI values, indicative of a decrease in vegetation activity, is observed. This trend is attributed to the possible impact of climate change and anthropogenic activity in recent decades. Although information between 2000 and 2012 is absent due to adverse weather conditions and failures in Landsat +7, the importance of continuous monitoring of vegetation cover to understand changes in ecosystems and support environmental management and adaptation to climate change is highlighted. These tools are essential for the long-term sustainable conservation of natural resources.

Downloads

Download data is not yet available.

Author Biography

  • Nestor Andrés Castillo Villavicencio, Universidad Técnica de Machala. El Oro. Ecuador.

    Ingeniero Agrónomo. Facultad de Ciencias Agropecuarias. Universidad Técnica de Machala. El Oro. Ecuador.

References

Aryastana, P., Goran, M. I., Widiana, W., Eka, I. M. E., & Rustiawan, G. (2022). Application of normalized difference vegetation index in classifying land cover change over Bangli regency by using Landsat 8 imagery. Journal of Infrastructure Planning and Engineering (JIPE), 1(1), 8-14. https://www.ejournal.warmadewa.ac.id/index.php/jipe/article/view/4718

Cao, D., Xing, H., Wong, M. S., Kwan, M.-P., Xing, H., & Meng, Y. (2021). A Stacking Ensemble Deep Learning Model for Building Extraction from Remote Sensing Images. Remote Sensing, 13(19), 2-22. https://doi.org/10.3390/rs13193898

Cobos, J. D., Luna, A. E., Barrezueta, S. A., & Jaramillo, E. E. (2021). Análisis multitemporal de cambios de cobertura y uso del suelo: cuenca del río jubones, Ecuador. Revista Científica Agroecosistemas, 9(1), 113–120. https://aes.ucf.edu.cu/index.php/aes/article/view/456

Hamed, K. H., & Ramachandra, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X

Hasan, M. M., & Wyseure, G. (2018). Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Science and Engineering, 11(2), 157–166. https://doi.org/10.1016/j.wse.2018.07.002

Llerena, S., Tarko, A., Kurbatova, A., & Kozhevnikova P. (2019). Assessment of carbon dynamics in Ecuadorian forests through the Mathematical Spatial Model of Global Carbon Cycle and the Normalized Differential Vegetation Index (NDVI). E3S Web of Conferences, 96, 02002. https://doi.org/10.1051/e3sconf/20199602002

Mejía, V., Orellana, D., & Cabrera-Barona, P. (2021). Cambio de uso de suelo en la Amazonía norte del Ecuador: Un análisis a través de imágenes satelitales nocturnas VIIRS e imágenes LANDSAT. Universidad-Verdad, 1(78), 10–29. https://periodico.uazuay.edu.ec/index.php/udaver/article/view/355

Morawitz, D. F., Blewett, T. M., Cohen, A., & Alberti, M. (2006). Using NDVI to assess vegetative land cover change in central Puget Sound. Environmental Monitoring and Assessment, 114(1–3), 85–106. https://doi.org/10.1007/s10661-006-1679-z

Pacheco, H. A., Zamora, E., & Jarre, E. (2020). Variaciones de la cobertura vegetal empleando el índice normalizado de diferencia de vegetación para monitorear ODS en Manabí - Ecuador. Revista Técnica De La Facultad De Ingeniería. Universidad Del Zulia, 43(2), 12-18. DOI:10.22209/rt.ve2020n2a02

Rodríguez, N. (2009). Rellenado de los gaps provocados por la falla del Scan Line Corrector en las imágenes Landsat 7 ETM+. [Tesis de grado, Universidad de La Habana, Cuba]. Repositorio Institucional.

Romo, M. G., & Calero, E. (2022). Degradation of páramo vegetation due to cattle ranching in Parque Nacional Llanganates, Ecuador. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 17(1), 27–34. https://doi.org/10.18378/rvads.v17i1.9093

Roque, R. A. (2022). Tendencia del NDVI en el Área de Conservación Regional Angostura Faical de Tumbes, Perú, 1999-2019. Manglar, 19(3), 233–237. https://doi.org/10.17268/manglar.2022.029

Shou-Ye, X., Hai-Yan, X., Cui-Cui, M., Tong-Hua, W., Wang-Ping, L., Wen-Xin, Z., Streletskaya, I., Grebenets, V., Sokratov, S., Kizyakov, A., & Xiao-Dong, W. (2021). Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Advances in Climate Change Research, 12(4), 456–465. https://doi.org/10.1016/j.accre.2021.04.003

Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sensing of Environment, 75(2), 230–244. https://doi.org/10.1016/S0034-4257(00)00169-3

Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to Landsat preprocessing. Ecology, 98(4), 920–932. https://doi.org/10.1002/ecy.1730

Published

2024-09-28

Issue

Section

Artículos

How to Cite

Trend analysis of the normalized difference vegetation index in the Casacay river subbasin, Ecuador (1989-2022) (Original). (2024). Roca. Scientific-Educational Publication of Granma Province., 20(4), 1131-1145. https://revistas.udg.co.cu/index.php/roca/article/view/4785