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ABSTRACT 

In this paper, we give a summary introduction to the Riemann zeta function. We also provide a 

brief overview of the q-calculus topics which are necessary to understand the main results. 

Finally, we give some q-representations for the q-analogue of the Apéry’s constant. 
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RESUMEN 

En este artículo damos un resumen introductorio de la función Zeta de Riemann. También 

proporcionamos una breve visión de la temática  q- cálculos la cual es necesaria para un 

entendimiento de los principales resultados. Finalmente, damos algunas representaciones para 

los q-análogos de la constante Apéry´s. 
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INTRODUCTION 

The Riemann zeta function [1, 2, 3, 8, 11, 14, 15] for Re s > 1 is defined by the series 

 

 which can be expressed as 

 

 

 

 

 

Where (·)k denotes the Pochhammer symbol, also called the shifted factorial, defined by 
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Q-analogue of the apéry’s constant 

 
 

 

which in terms of the 

gamma function is given 

by     

 

and rFs  denotes the ordinary hypergeometric series [7, 10, 12] with variable z is defined by  

 

 

being 

 

 

with  and  complex numbers subject to the 

condition that  , with  for  

 

In particular, the Apéry’s constant can be rewritten as 

 

The structure of the paper is as follows. In Section 2, we compress some necessary definitions 

and tools. Finally, in Section 3, we give the main results. 

1 q-Calculus 

There is no general rigorous definition of q-analogues. An intuitive definition of a q-analogues of 

a mathematical object  is a family of objects  with 0 < q < 1, such that 

    

 

Thus, the q-Calculus,  i.e.  the q-analogues of the usual calculus. 

Let the q-analogues of Pochhammer symbol [7, 10] or q-shifted factorial be defined by     

  

                                         (3) 
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where     

 

                                                (4) 

The formula (3) is known as the Watson notation [4, 5]. The q-binomial coefficient [7, 10] is 

defined by 

, 

 

and for complex z is defined by                                                                                                          

                                                 

                                                                         (5) 

 

In addition, using the above definitions, we have that the binomial theorem 

 

has a q-analogue of the form 

. 

In particular, when y = 0 we have that 

                                                                                                                                                    (6) 

 

In comparison with the ordinary hypergeometric series r Fs defined by (1), is present here in a 

concise manner, the basic hypergeometric or q-hypergeometric series r s. The details can be 

found in [7, 10]. 

Let  and be complex numbers subject to the condition that  with 

Then the basic hypergeometric or q-hypergeometric series rφs with 

variable z is defined by 

 

where 
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In addition, for brevity, let us denote by 

 

 

The q-

hypergeometric rφs 

series is a q-

analogue of the 

ordinary 

hypergeometric rFs series defined by (1) since 

 

 

 

The q-analogue of the Chu-Vandermonde convolution is given by 

   

       (7) 

 

 

      (8) 

 

The details can be found in [7, 10]. 

The q-analogue  of the differential of a fuction is defined as 

 

Having said this, we immediately get the q-analogue of the derivate of a function f (x) [6], called 

its q-derivative 

 

The q-Jackson integrals [6] from 0 to a and from 0 to  are defined by 

, 
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provided the sums converge absolutely. The q-Jackson integral in a generic interval [a,b] is 

given by 

 

 

A q-analogue of the integration by parts theorem is given for suitable functions f and g by 

 

 

and a q-analogue of the integration theorem by change of variable for 

 is as follows 

                        

In particular 

 

 (9) 

2 q-Analogue of the 

Apéry’s constant 

The Apéry’s constant (2) has a q-analogue [8, 9, 13], defined by   

                                       (10) 

 

where the q-integer [n]q is defined by 

. 

I 

t makes sense to call this a q-analogue, since 

. 

The q-analogue of the Apéry’s constant ζq (3) is related with q-hypergeometric series 4φ3 of the 

following way 

 

 

Lemma 3.1. The following 

relations 

 

            (11) 



Q-analogue of the apéry’s constant 

 
 

 

 

 (12) 

 

Proof. Taking into account that    

 

 

Then, from (4) and (5) we have 

 

 

 

 

Finally, using (6) we get the desired result for (11). 

From the acquired result in (9) we get that 

  

 

 

 

 

 

 

The interchanges of summation and integration are in each case justified by Lebesgue’s 

monotone convergence theorem. Then 

 

 

 

 

 

 

After making the change of variable t = 1 − x, 

we obtain    
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Therefore 

 

 

 

which coincides with (12). In 

this way, the lemma is 

completed. 

Theorem 3.2.  Let , then the q-analogue of the Apéry’s constant (10) admits the following 

representations   

and 

 

 

 

 

 

 

 

Proof. In order to prove (13) it’s enough check 

 

 

 

Then, having 

into account 
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and the q-Chu-Vandermonde formula (8) as well as the lemma 3.1, we get the desired result for 

(14). Thus, the prove is completed. 
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